
SOLVCON Dev Plan
2018Q1

Yung-Yu Chen
yyc@solvcon.net
20180302

mailto:yyc@solvcon.net

Background

「歌は命」

「歌は希望」

「歌は愛」

「歌は神秘」

「歌は元気」

so is code

SOLVCON Goal
❖ A Python-based application framework equipped with C++11-based

solvers for continuum mechanics

❖ “libmarch” provides high-performance solvers, and loosely
couples to the high-level SOLVCON framework

❖ easy-to-use (as a research code or a black-box tool) and
dependable

❖ high-performance and massively-parallel

❖ What was SOLVCON: A Python-based software framework for
calculating conservation laws for multi-physics using parallel
computing

Foundation: Open Source

❖ SOLVCON is an open-source software (OSS) project.

❖ SOLVCON uses BSD license. The only condition for
using it (including its source code) is to add the license
to your software.

❖ Note: SOLVCON is NOT the copy-left “Free
Software”, which is cumbersome in many commercial
applications.

History
❖ 2005-2009: Various predecessors

❖ 2009-2011: Project starts

❖ 2011: Python/C (ctypes) hybrid architecture settles

❖ Scale up to 2000 cores, 66M elements

❖ Multiple physics: Euler equations, anisotropic velocity-stress equations, viscoelastic model, etc.

❖ 2012-2016: Python/C (Cython) experimentation

❖ Strengthen the wrapping layer

❖ 2016-now: Python/C++11 (pybind11) hybrid architecture

❖ C++ template generic programming to replace C macro

❖ Create “libmarch” to enable OO to low-level computing kernel

❖ Attempt to handle mesh processing and generation

Immediate Deliverables

❖ Test 3D Euler solver (march::gas)

❖ Distill the CESE solver (march::cese)

❖ (Re-)enable message-passing parallelism (march::mp)

❖ Develop granular flow solver march::gran

❖ Develop Navier-Stokes solver (together in march::gas)

Working System
❖ The open-source way: release early, release fast

❖ Seminars for software development

❖ Internal speakers analyze and organize project progress

❖ External speakers introduce new information and
provide training

❖ What happens in code remains in code. Whenever
possible, discuss code online using GitHub, emails, etc.

❖ F2F meetups are precious and should be used efficiently

Skills and Tools
❖ Speak programming languages: Python and C++11

❖ Speak mathematics

❖ Use LaTeX to exchange information / notes

❖ Automate everything: code and notes

❖ Version control: GitHub

❖ References: Zotero

❖ Data: we need to build a computer farm

Project Driven Learning

❖ The only effective way to learn programming: do it and
get corrected

❖ When entering a new area, it takes weeks of hard work
to make even a code review

❖ The same amount of time to improve to the quality
for checking in

Write Down Everything
❖ Critical always

❖ Source code needs to be written down and then executed. Ideas don’t run.

❖ Research needs to be published.

❖ Types:

❖ Code/paper development and planning: GitHub issue tracking

❖ Equations and manuscript: LaTeX files in Git repository

❖ Plotting and schematics: Python and PsTricks/LaTeX. Excellently reproducible but
hard to produce at the first time.

❖ Topics falling outside the organized types go with emails.

❖ Last resort: verbal communication. Good for pathfinding, but it’s trackless and error-
prone. Write down agenda before and minutes and action items after.

Distant Projects

❖ C++11/Python hybrid API for mesh manipulation and
generation

❖ Visualizer (of course basic ones) and Qt-based GUI

❖ Prototype solving kernels in Python

❖ Then, use JIT compilation for the Python solving kernels

Research Team Status Quo

❖ Computer / server farm (facility)?

❖ Version control?

❖ Testing strategy / coverage?

❖ Code review?

❖ Continuous integration?

